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Abstract. Modern software systems, which often are concurrent and

manipulate complex data structures must be extremely reliable. We

present a novel framework based on symbolic execution, for automated

checking of such systems. We provide a two-fold generalization of tradi-

tional symbolic execution based approaches: one, we define a program

instrumentation, which enables standard model checkers to perform sym-

bolic execution; two, we give a novel symbolic execution algorithm that

handles dynamically allocated structures (e.g., lists and trees), method

preconditions (e.g., acyclicity of lists), data (e.g., integers and strings)

and concurrency. The program instrumentation enables a model checker

to automatically explore program heap configurations (using a system-

atic treatment of alia.sing) and manipulate logical formulae on program

data values (using a decision procedure). We illustrate two applications

of our framework: checking correctness of multi-threaded programs that

take inputs from unbounded domains with complex structure and gener-

ation of non-isomorphic test inputs that satisfy a testing criterion. Our

implementation for Java uses the Java PathFinder model checker.

1 Introduction

Modern software systems, which often are concurrent and manipulate complex

dynamically allocated data structures (e.g., linked lists or binary trees), must

be extremely reliable and correct. Two commonly used techniques for checking

correctness of such systems are testing and model checking. Testing is widely

used but usually involves manual test input generation. Fhrthermore, testing is

not good at finding errors related to concurrent behavior. Model checking, on

the other hand, is automatic and particularly good at analyzing (concurrent)

reactive systems. A drawback of model checking is that it suffers from the state-

space explosion problem and typically requires a closed system, i.e., a system

together with its environment, and a bound on input sizes [6, 9, 19].

We present a novel framework based on symbolic execution [15], which au-

tomates test case generation, allows model checking concurrent programs that

take inputs from unbounded domains with complex structure, and helps com-

bat state-space explosion. Symbolic execution is a well known program analysis

technique, which represents values of program variables with symbolic values in-

stead of concrete (initialized) data and manipulates expressions involving sym-

bolic values. Symbolic execution traditionally arose in the context of checking
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sequential programs with a fixed number of integer variables. Several recent ap-

proaches [3, 5, 7] extend the traditional notion of symbolic execution to perform

various program analyses; these approaches, however, require dedicated tools to

perform the analyses and do not handle concurrent systems with complex inputs.

We provide a two-fold generalization of traditional symbolic execution.

One, we define a program instrumentation, which enables symbolic execu-

tion to be performed using a standard model checker (for the underlying lan-

guage) without having to build a dedicated tool. A source-to-source translation
instruments the original program and the resulting program can be symbolically

executed by any model checker that supports non-deterministic choice. In partic-

ular, the model checker checks the program by automatically exploring program
heap configurations (using a systematic treatment of aliasing) and manipulating

logical formulae on program data values (using a decision procedure).

Two, we give a novel symbolic execution algorithm that allows symbolic

execution of programs that use advanced constructs of modern programming

languages, such as Java and C++. Our algorithm handles dynamically allocated

structures (e.g., lists and trces), method preconditions (e.g., acyclicity of lists),

data (e.g., integers and strings) and concurrency. To symbolically execute a

method, the algorithm uses lazy initialization, i.e., it initializes the components

of the method inputs on an "as-needed" basis, without requiring a priori bound

on input sizes. The algorithm supports the use of preconditions to initialize fields

only with valid values; this builds on our previous work [2] on using preconditions
to generate inputs for black box testing.

Our program instrumentation and symbolic execution algorithm enable check-

ing of concurrent programs that take inputs from unbounded domains with com-

plex structure using a standard model checker. To check a method's correctness,

we use postconditions as test oracles (as in [2]); we also support partial correct-

ness properties given as assertions in the program and temporal specifications.
The main contributions of our work are:

- Providing a two-fold generalization of symbolic execution: one, to enable

a standard model checker to perform symbolic execution; two, to give an

algorithm for symbolic execution of programs in real languages (e.g., Java);

- Performing symbolic execution of code during explicit state model checking
• to address the state space explosion problem: we check the behavior of

code using symbolic values that represent data from very large domains
instead of enumerating and checking for a small set of concrete values;

• to achieve modularity: checking programs with uninitialized variables

allows checking of a compilation unit in isolation;

• to allow checking multithreaded programs against specifications that ex-
press strong correctness properties, e.g., the correctness of a distributed

algorithm for sorting linked lists with integers;

• to allow exploiting the model checker's built-in capabilities, such as

different search strategies (e.g., heuristic search), checking of temporal

properties, and partial order and symmetry reductions;

- Automating non-isomorphic test input generation to satisfy a testing crite-

rion for programs with complex inputs and preconditions;
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class Node {

int elem;

Node next;

Node swapNode() {

i: if(next!=null)

2: if(elem-next.elem>0){

3: Node t = next;

4: next = t.next;

5: t.next = this;

6: return t;

}

7: return this;

}

..... !np.t_is_............. _ ........co._m!et..... => ................ Returned.J!_ ..........

[] .... > []

.... none => [_ next

(+>El) :> _nextDext

CEO > El) => next

Fig. 1. Code to sort the first two nodes of a list (left) and an analysis of this code using

our symbolic execution based approach (right).

- A series of examples and a prototype implementation in Java, using the

Java PathFinder model checker, to illustrate the power of our approach;

our approach can easily be applied to other object-oriented and imperative

languages and model checkers.

Section 2 shows an example analysis in our framework. Section 3 describes

traditional symbolic execution. Section 4 gives our algorithm for generalized

symbolic execution. Section 5 describes our framework and Section 6 describes

our implementation and instrumentation. Section 7 illustrates two applications of

our implementation. We give related work in Section 8 and conclude in Section 9.

2 Example

This section presents an example to illustrate our approach. We check a method

that destructively updates its input structure. The Java code in Figure 1 declares

a class Node that implements singly-linked lists. The fields elem and next repre-

sent, respectively, the node's integer value and a reference to the next node. The

method swapNode destructively updates its input list (referenced by the implicit

parameter this) to sort its first two nodes and returns the resulting list.

We analyze swapNode using our prototype implementation (Section 6) and

check that there are no unhandled runtime exceptions during any execution of

swapNode. The analysis automatically verifies that this property holds.

The analysis checks seven symbolic executions of swapNode (Figure 1). These

executions together represent all possible actua/ executions of swapNode. For

each symbolic execution, the analysis produces an input structure, a constraint

on the integer values in the input and the output structure. Thus for each row-,

any actual input list that has the given structure and has integer values that

satisfy the given constraint, would result in the given output list. For an execu-

tion, the value "?" for an elem field indicates that the field is not accessed and

the "cloud" indicates that the next field is not accessed.
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±nt x, y;

I: if (x > y) {

2: x = x + y;

3: y = x - y;

4: x = x - y;

5: if (x - y > O)

6: assert (false) ;

}

PC: true

......... _ .... " ....._a,. .........
-<.1

!x:X,y:Y i x:X,y:Y
i PC: X>Y i i PC:X<=Y i

'IIII  LI .....................
! x: X+Y, y: Y:
i PC: X>Y :

• x: X+Y, y: X!
PC: X>Y

...... ......

.............. _r,<. :..x..>..Y..._ .................
x:Y,y:X x: Y, y:X
PC: X>Y & Y-X>Oi PC: X>Y & Y-X<--O

.............. r:._...SE!.!

Fig. 2. Code that Swaps two integers and the corresponding symbolic execution tree,

where transitions are labeled with program control points•

Each input structure represents an isomorphism partition of the input space,

e.g., the last row in the table shows an input that represents all (cyclic or acyclic)

lists with at least three nodes such that the first element is greater than the

second element; the list returned has the first two elements swapped.

If we comment out the check for null on line (1) in swapNode, the analysis

reports that for the top most input in Figure 1, the method raises an unhandled

NullPointerException. All other input/output pairs stay the same. The anal-

ysis, therefore, refutes the method's correctness by providing a counterexample.

The analysis supports method preconditions. For example, if we add to

swapNode a precondition that the input list should be acyclic, the analysis does

not consider the three executions (Figure 1), where the input has a cycle. The

input structures and constraints can be used for test input generation.

3 Background: Symbolic execution

The main idea behind symbolic execution [15] is to use symbolic values, instead

of actual data, as input values, and to represent the values of program variables

as symbolic expressions. As a result, the output values computed by a program

are expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the (symbolic) values

of program variables, a path condition (PC) and a program counter. The path

condition is a (quantifier-free) boolean formula over the symbolic inputs; it ac-

cumulates constraints which the inputs must satisfy in order for an execution

to follow the particular assocciated path. The program counter defines the next

statement to be executed. A symbolic execution tree characterizing the execution

paths followed during the symbolic execution of a program. The nodes represent

program states and the arcs represent transitions between states.

Consider the code fragment in Figure 2, which swaps the values of integer

variables x and y, when x is greater than y. Figure 2 also shows the corresponding
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// initialization of field f on first access

if ( f is uninitialized ) {

if ( f is reference field of type T ) {

nondeterministically initialize f to

I. null

2. a new object of class T (with uninitialized field values)

3. an object created during a prior initialization of a field of type T

if ( method_precondition is violated )

backtrack();

)

if ( f is primitive (or string) field )

initialize f to a new symbolic value of appropriate type

Fig. 3. Lazy initialization

symbolic execution tree. Initially, PC is true and x and y have symbolic values

X and Y, respectively. At each branch point, PC is updated with assumptions

about the inputs, in order to choose between alternative paths. For example,

after the execution of the first statement, both then and else alternatives of the

if statement are possible, and PC is updated accordingly. If the path condition

becomes false, i.e., there is no set of inputs that satisfy it, this means that the

symbolic state is not reachable, and symbolic execution does not continue for

that path. For example, statement (6) is unreachable.

4 Algorithm

This section describes our algorithm for generalizing traditional symbolic exe-

cution to support advanced constructs of modern programming languages, such

as Java and C++. We focus here on sequential programs. Section 5 presents the

treatment of multithreaded programs.

4.1 Lazy initialization

The heart of our framework is a novel algorithm for symbolically executing a

method that takes as inputs complex data structures with unbounded data. A

key feature of the algorithm is that it starts execution of the method on inputs

with uninitiaIized fields and uses lazy initialization to assign values to these

fields, i.e., it initializes fields when they are first accessed during the method's

symbolic execution. This allows symbolic execution of methods without requiring

an apriori bound on the number of input objects.

We explain how the algorithm symbolically executes a method with one in-

put object, i.e., the implicit input this. Methods with multiple parameters are

treated similarly [2]. To execute a method m in class C, the algorithm first creates

a new object o of class C with uninitialized fields. Next, the algorithm invokes

o.m() and the execution proceeds following Java semantics for operations on

reference fields and following traditionM symbolic execution for operations on

primitive fields, with the exception of the special treatment of accesses to unini-

tialized fields (Figure 3):
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- When the execution accesses an uninitialized reference field, the algorithm

nondeterministically initializes the field to the value null, to a reference to

new object with uninitialized fields, or to a reference of an object created

during a prior field initialization; this systematically treats aliasing. When

the execution accesses an uninitialized primitive (or string) field, the algo-

rithm first initializes the field to a new symbolic value of the appropriate type

and then the execution proceeds. Our algorithm supports the use of method

preconditions to ensure that fields are initialized to values permitted by the

precondition: when a reference field is initialized, the algorithm checks that

the precondition does not fail for the structure and the path condition that

currently constrain o;
- If the execution evaluates a branching condition on primitive fields, the al-

gorithm nbndeterministically adds the condition or its negation to the corre-

sponding path condition and checks the path condition's satisfiability using a

decision procedure. If the path condition becomes infeasible, the current ex-

ecution terminates (i.e., the algorithm backtracks). Otherwise the execution
proceeds. This systematically updates path conditions on primitive fields.

To check the method's correctness, the algorithm uses the method's post-

condition as a test oracle, whenever the symbolic execution (of a feasible path)

terminates without backtracking.

Input generation To generate inputs that meet a given testing criteria, the
algorithm symbolically executes the paths specified by the criteria. When the

algorithm completes symbolic execution of a path it generates an input structure

and a path condition on the primitive values in the structure, which together

define a set of inputs that execute the path. The algorithm generates such inputs

even for programs that perform destructive updates: it builds mappings between

objects with uninitialized fields and objects that are created when those fields

are initialized; it uses these mappings to construct input structures.

Isomorph breaking and structure generation A nice consequence of

lazy initialization of input fields is that for sequential programs, the algorithm
only executes program paths on nonisomorphic 3 inputs. In particular, the algo-

rithm can be used for systematic generation of inputs that have complex struc-

tural constraints by symbolically executing a predicate that checks the structural
constraints, as in [2].

4.2 Illustration
\Ve illustrate the algorithm using our running example from Figure 1. The sym-

bolic execution tree in Figure 4 illustrates some of the paths that the algorithm

explores while symbolically executing swapNode. Each node of the execution tree

denotes a state, which consists of the state of the heap (including the symbolic

values of the elem fields) and the path condition accumulated along the branch

(path) in the tree. A transition of the execution tree connects two tree nodes

and corresponds to either execution'of a statement of swapNode or to a lazy ini-

tialization step; branching in the tree corresponds to a nondeterministic choice
that is introduced to handle aliasing or build a path condition.

3 This definition of isomorphism views structures as edge(node)-labeled graphs.
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/ Initialize "next"
........_Z....ZIITIICIIZ_ ................., instmt
i[] let'...
-::..... ii.ii.2i...i}.ii.iii.iii2................

/ Initialize "elem"

iiiiiiiiii .iii_.ii i iiiii i' /Initialize"next'elem"
I in stmt 2

............................. 2...................2_............_ ...................
PC: E0>E1, _ PC: EO<=E1 ... i

LLL....LL3.C.LZ;.Z.....;. "...................

................................. } ins n,4
........ xt .... / ........................................... __ ............. next

: e : i __next _ i : next--next ::

"'" .......L.........;.C..-2....2.2.................."'"....................."'".......
next

....
Fig. 4. Symbolic execution tree (excerpts). The nodes of the tree represent a state,

using notation described in Section 2.

The algorithm creates a new node object and invokes swapNode on the object.

Line (1) accesses the uninitialized next field and causes it to be initialized.

The algorithm explores three possibilities: either the field is null or the field

points to a new symbolic object or the field points to a previously created object

of the same type (with the only option being itself). Intuitively, this means

that, at this point in the execution, we make three different assumptions about

the configuration of the input list, according to different aliasing possibilities.

Another initialization happens during execution of statement (4), which results

in four possibilities, as there are two Node objects at that point in the execution.

When a condition involving primitive fields is symbolically executed (e.g.,

statement (2)), the execution tree has a branch corresponding to the each pos-

sible outcome of the condition's evaluation; evaluation of a condition involving

reference fields does not cause branching unless uninitialized fields are accessed.

If swapNode has the precondition that its input should be acyclic, the algo-

rithm does not explore the transitions marked with an "X".

The input list corresponding to the output list pointed to by t in the bottom

most tree node is shown on the bottom row of Figure 1.
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Fig. 5. General methodology

5 Framework

This section describes our symbolic execution based framework for checking

correctness of software systems. Figure 5 illustrates our basic framework. To

enable a model checker to perform symbolic execution (following the algorithm
from Section 4), we instrument the original program by doing a source-to-source

translation that adds nondeterminism and support for manipulating formulae

that represent path conditions. The instrumentation allows any model checker

that supports backtracking to perform symbolic execution (essentially, the model

checker explores the symbolic execution tree of the program). Code instrumen-

tation uses a correctness specification to add precondition checking (which is
performed during field initialization) and postcondition checking (which is per-

formed when an execution completes) to the original program. Code instrumen-

tation can also generate a program that has the same behavior as the original

program for certain executions of interest, e.g., if the user is interested in limit-

ing loop unrolling to 0 or 1 [7], the instrumented program has all while loops

replaced by if statements. We describe some details of the instrumentation our

prototype implementation performs in Section 6.

The model checker checks the instrumented program using its usual state
space exploration technique(s). A state includes a heap configuration, a path

condition on primitive fields, and thread scheduling. Whenever a path condi-

tion is updated, the model checker checks the path condition for satisfiability

using an appropriate decision procedure, such as the Omega library [17] for lin-

ear integer constraints. If the path condition is unsatisfiable, the model checker

backtracks. The search of model checker can be guided by a heuristic provided

by the user [10].

Correctness specifications can be given as preconditions and postconditions,

assertions or more general safety properties. Safety properties can be written in

the logical formalism recognized by the model checker or they can be specified

with code instrumentation, as in [1].
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Theframeworkcanbeusedboth for correctnesscheckingandtest input
generation.Whilecheckingcorrectness, the model checker reports counterex-

ample(s) that violate a correctness criterion. While generating test inputs, the

model checker generates paths that are witnesses to a testing criteria encoded

in the specification, i.e., the3, are counterexamples to the negation of the specifi-

cation. Testing criteria can be encoded as correctness specifications as in [8, 13].
For every reported path, the model checker also reports the input heap config-

uration, the path condition for the primitive fields in the input, and a thread

scheduling, which can be used to reproduce the error.

Multi-threaded and non-deterministic systems Our framework allows

a standard model checker to perform symbolic execution. We use the model

checker also to systematically analyze thread interleavings and other forms of

nondeterminism that might be present in the code. Our framework also allows
exploiting the model checker's built-in ability to combat state space explosion,

e.g., by using partial order and symmetry reductions, heuristic search.

Loops, recursion, method invocations \¥e exploit the model checker's

search abilities to handle arbitrary program control flow. \Ve do not require the

model checker to perform state matching, since state matching is, in general,

undecidable when states represent path conditions on unbounded data. Note

also that performing (forward) symbolic execution on programs with loops can

explore infinite execution trees. Therefore, for systematic state space exploration

we use depth first search with iterative deepening (Section 7.1) or breadth first

search (Section 7.2); our framework also supports heuristic based search [10].

Our framework can be used for finding counterexamples to safety properties;
it can prove correctness for programs that have finite execution trees and have
decidable data constraints.

6 Implementation

We have implemented our approach in Java to check Java programs. For code

instrumentation, we build on the Korat tool [2] and modify Sun's j avac compiler.

For systematic state space exploration of instrumented programs, we build on the

the Java PathFinder (JPF) [19] model checker and as a decision procedure we use

a Java implementation of the Omega library [17] (that manipulates sets of linear
constraints over integer variables). This section outlines the instrumentation,

briefly describes JPF, and presents a critique of our approach.

6.1 Instrumentation
Conceptually, the instrumentation proceeds in two steps. First, the integer fields

and operations are instrumented: the declared type of integer fields of input ob-

jects is changed to Expression, which is a library class we provide to support

manipulation of symbolic integer expressions; a type analysis is used to deter-

mine which integer variables have their declared types changed to Express ion 4;

the operations involving these fields and variables are replaced with method

calls that implement "equivalent" operations that manipulate objects of type

Expression. Second, the field accesses are instrumented: field reads are replaced

4 We have not yet automated the type analysis
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class Node {

Expression elem;

Node next;

boolean _next_is_initialized;

boolean _elem_is_initialized;

Node swapNode() {

I: if(_get_next() )= null)

2: if(Expression._pc._update_GT(

_get_elem()._minus(

_get_next()._get_elem())

new IntegerConstant(O)) {

3: Node t = _get_next();

4: _set_next(t._get_next());

5: t._set_next(this);

6: return t;

}

7: return this; } }

class Expression { ...

static PathCondition _pc;

Expression _minus (Expression e){
...}}

class PathCondition { ...

Constraints c;

boolean _update_GT(Expression el,

Expression e2){

boolean result = choose_boolean();

if (result)

c.add_constraint_GT(el, e2) ;

else

c.add_constraint_LE (el,e2) ;

if (!c.is_satisfiable ())

backtrack() ;

return result ;

}}

Fig. 6. Instrumented code (left) and library classes (right)

by get methods that return a value based on whether the field is symbolic or not

(get methods implement the lazy initialization, as described in Section 4); field

updates are replaced by set methods which update the field's value; the get

and set methods for a field also set a flag to indicate that the field is initialized.

As an illustration of the instrumentation, consider the code fragment from

Figure 1. Figure 6 gives part of the resulting code after instrumentation (left)

and the library classes (right) that we provide. The static field Expression._pc

stores the (numeric) path condition. The method _update_GT makes a nondeter-

ministic choice (i.e., a call to choose_boolean) to add to the path condition the

constraint or the negation of the constraint its invocation expresses and returns

the corresponding boolean. Method is_satisfiable uses the Omega library

to check if the path condition is infeasible (in which case, JPF will backtrack).

The method _minus constructs a new Expression that represents the difference

between its input parameters. IntegerConstant is a subclass of Expression

and wraps concrete integer values. To keep track of uninitialized input fields we

add a boolean field in the class declaration for each reference field in the original

declaration, e.g., _next_is_initialized and _elem_is_initialized (which are

set to true by get (set) methods).

To store the input objects that are created as a result of a lazy initializa-

tion, we use a variable of class java.util.Vector, for each class that is in-

strumented. The get methods use the elements in this vector to systematically

initialize input reference fields. Our implementation also provides the library

class StringExpression to symbolically manipulate strings.

6.2 Java PathFinder

Our current prototype uses the Java PathFinder model checker (JPF), an explicit-

state model checker for Java programs that is built on top of a custom-made
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Java Virtual Machine (JVM). Since it is built on a JVM, it can handle all of

the language features of Java, but in addition it also treats nondeterministic

choice expressed in annotations of the program being analyzed. These features

for adding nondeterminism are used to implement the updating of path condi-

tions and the initialization of fields. JPF supports program annotations to cause
the search to backtrack when a certain condition evaluates to true--this is used

to stop the analysis of infeasible paths (when path conditions are found to be

unsatisfiable). Lastly, JPF supports various heuristics [10], including ones based

on increasing testing-related coverage (e.g., statement, branch and condition

coverage), that can be used to guide the model checker's search.

6.3 Discussion

W'e use preconditions in initializing fields. In particular, a field is not initialized

to a value that violates the precondition. Notice that we evaluate a precondition

on a structure that still may have some uninitialized fields, therefore we require

the precondition to be conservative, i.e., return false only if the initialized

fields of the structure violate a constraint in the precondition. A conservative

precondition or simply undecidability of path conditions may lead our analysis

to explore infeasible program paths.

We have not provided here a treatment of arrays. Following [2], we could

systematically initialize array length when an array field is first accessed, and

then treat each array component as a field. We would like to extend our analysis

to treat array length as a symbolic integer.

Our algorithm handles subclassing: in step 3 in Figure 3 consider all objects

created during a prior initialization of a field of type T or of a type S, where S is
a subclass of T.

7 Applications

This section shows two applications of our framework: correctness checking of a

distributed algorithm and test input generation for flight software.

7.1 Checking multithreaded programs with inputs

_Ve illustrate an application of our symbolic execution framework on an example

that (incorrectly) implements a distributed algorithm for sorting linked -lists

with integers (in ascending order). To sort an input list, the algorithm spawns a
number of threads proportional to the number of nodes in the list. Each thread

is assigned two adjacent list nodes and allowed a maximum number of swaps it
can perform on elements in these nodes. This example illustrates our symbolic

execution technique in the context of concurrency, structured data (linked lists),

integer values as well as method pre-conditions and partial correctness criteria.

The Java code in Figure 7 declares a singly linked list and defines a method

for sorting lists. The method distributedSort takes an input list and spawns

several threads to sort the list. For each adjacent pair of nodes in the list,

distributedSort spawns a new thread that is responsible for swapping ele-

ments in these nodes. This method has a precondition that its input list should

be acyclic, as specified by the precondition clause.
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class List {

Node header;

//G precondition: acyclic();

void distributedSortO {

if (header == null) return;

if (header.next == null) return;

int i = O;

Node t = header;

while (t.next != null) {

new Swapper(t, +_i).start();

t = tlnext;

}
}

}

class Swapper extends java.lang.Thread {

//can swap current.elem,current.next.elem

Node current;

int maxSwaps;

Swapper(Node m, int n) {

current = m; maxSwaps = n;

}
public void run() {

int ewapCount = O;

for (int i = O; i < mazSwaps; i++)

if (current.swapElem()) swapCount++;

//@ assert: if (swapCount == maxSwaps)

//@ current.inDrder();

}
)

Fig. 7. A distributed sorting

class List {

boolean acyclicO {

Set visited = new NashSet();

Node current = header;

while (current != null) {

if ()visited.add(current))

return false ;

current = current.next ;

}
return true ;

}}

class Node {

int elem;

Node next ;

synchronized boolean swapElem(){

synchronized (next) {

if (elem > next,elem) {

// actual swap

int t = elem;

elem = next.elem;

next.elem = t;

return true ;

}}
return false; // do nothing

}
synchronized'boolean in0rder O {

synchronized (next) {

if (elem > next.elem) return false;

retnrn true ;

}}
method for singly linked lists.

The swapElem method returns true or false based on whether the invoca-

tion actually swapped out of order elements or whether it was simply a no-op

(note that swapElem is different from swapNode in Figure 1, that performs de-

structive updating of the input list). We use synchronization to ensure that each

list element is only accessed by one thread at a time. The assert clause declares

a partial correctness property, which states that if a thread performs the allowed

maximum number of actual swaps, then the element in node current is in order.

We use our implementation to symbolically execute distributedSort on

acyclic lists and analyze the method's correctness. The analysis invalidates the

stated correctness property and produces the following counterexample:

input list: IX] -> [Y] -> [Z] such that X > Y > Z

Thread-l: swaps X and Y

Thread-2: swaps X and Z

resulting list: [Y] -> [Z] -> [X]; Y and Z out of order

The input list consists of three symbolic integers X, Y, and Z such that X > Y >

Z. Thread-1 is allowed one swap and Thread-2 is allowed two swaps. Thread-1

performs its swap before Thread-2 performs any swap. Now Thread-2 performs

a swap. The resulting list after these two swaps is [Y] -> [Z] -> [X] with Y

> Z. Since Thread-1 is not allowed any more swaps, it is not possible to bring

Y and Z in order. Thus, the input list together with this thread scheduling give

a counterexample to the specified correctness property. Note that to analyze
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distributedSort we did not a priori bound the size of the list (and therefore

the number of threads to spawn).

7.2 Test input generation
We applied our framework to derive test inputs for code coverage, specifically

condition coverage, of an Altitude Switch used in flight control software (1800

lines of Java code) [11]. The switch receives as input a sequence of time-stamped

messages indicating the current altitude of an aircraft as well as an indication of

whether this reading is considered accurate or not (represented by the strings).

The input sequence was stored in a linked list of messages of undefined length,
and the program was instrumented to print out the input sequence as well as the

integer and string constraints, whenever a new condition, i.e. one that was not

covered before, was executed. The example therefore is a program that has as

input a complex data structure (i.e., the message list), and it manipulates both

integer and string constraints.

We used breadth-first search during model checking and the tool discovered

test inputs to cover all the conditions within 22 minutes of running time (on a 2.2

GHz Pentium with 2GB of memory). In contrast, we also used traditional model

checking with JPF, where we fixed the input sequence to have 3 messages and

the range of altitude values to be picked nondeterministically from 0 to 20000

feet--the model checking did not finish, and as a consequence did not generate

test inputs, for about a third of the conditions before memory was exhausted.

8 Related work

King [15] developed EFFIGY, a system for symbolic execution of programs with
a fixed number of integer variables. EFFIGY supported various kinds of program

analyses including test case generation and seems to be one of the earliest systems
of its kind.

PREfix is a bug-finding tool [3] based essentially on symbolic execution.

PREfix has been used very successfully on large scale commercial applications.

PREfix analyzes programs written in C/C++ and aims to detect defects in dy-
namic memory management. It does not check rich properties, such as invariants '

on data structures. PREfix may miss errors and it may report false alarms.

In previous work we developed Korat [2], a novel constraint solver for impera-

tive predicates to generate inputs from preconditions for black-box testing using

a given bound on input sizes. The work we present here additionally provides

test input generation for white-box testing, supports symbolic manipulation of

data values using a decision procedure, does not require bounds on input sizes,

supports checking of multi-threaded programs and extends instrumentation to

enable any model checker to perform symbolic execution.

Several projects aim at developing static analyses for verifying program prop-

erties. The Extended Static Checker (ESC) [7] uses a theorem prover to verify
partial correctness of classes annotated with JML specifications. ESC has been

used to verify absence of such errors as null pointer dereferences, array bounds

violations, and division by zero. However, tools like ESC cannot verify properties

of complex linked data structures.
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Therearesomerecentresearchprojectsthat attemptto addressthisissue.
TheThree-Valued-LogicAnalyzer(TVLA) [18]is thefirst staticanalysissys-
temto verifythat the list structureispreservedin programsthatperformlist
reversalsviadestructiveupdatingoftheinputlist. TVLAhasbeenusedto an-
alyzeprogramsthat manipulatedoublylinkedlistsandcircularlists,aswell
assomesortingprograms.Thepointerassertionlogicengine(PALE)[16]can
verifya largeclassofdatastructuresthatcanberepresentedbyaspanningtree
backbone,withpossiblyadditionalpointersthat donotaddextrainformation.
Thesedatastructuresincludedoublylinkedlists,treeswith parentpointers,
andthreadedtrees.Bothsystemsrequireconsiderablemanualeffort:TVLA re-
quiresinstrumentationpredicates,andPALErequiresdetailedloopinvariants.
Shapeanalyses,suchasTVLA andPALE,typicallydonotverifypropertiesof
programsthat performoperationsondatavalues.

TheAlloyconstraintanalyzerhasbeenusedin [14]for analyzingbounded
initial segmentsofcomputationsequencesmanipulatinglinkedlistsbytranslat-
ingthemintofirst orderlogic.Thisapproachrequiresaboundontheinputsizes
anddoesnottreatprimitivedatasymbolically.

Therehasbeenalotofrecentinterestinapplyingmodelcheckingto software.
JavaPathFinder[19]andVeriSoft[9]operatedirectlyonaJava,respectivelyC
program.Otherprojects,suchasBandera[6],translateJavaprogramsintothe
inputlanguageof SPIN[12]andNuSMV[4].Theyarewholeprogramanalysis
(i.e.,cannotanalyzea procedurein isolation).Oursource-to-sourcetranslation
enablesthesetoolsto performsymbolicexecution,andhenceenablesthemto
analyzesystemswithcomplexinputsandto analyzeproceduresin isolation.

TheSLAMtool [1]focusesoncheckingsequentialCcodewithstaticdata,
usingwell-engineeredpredicateabstractionandabstractionrefinementtools.It
doesnothandledynamicallyallocateddatastructures.

TheCompositeSymbolicLibrary[20]usessymbolicforwardfixpointoper-
ationsto computethereachablestatesof aprogram.It useswideningto help
terminationbutcananalyzeprogramsthat manipulatelistswithonlya fixed
numberofintegerfieldsandisawhole-programanalysis.

9 Conclusion
Wepresenteda novelframeworkbasedonsymbolicexecution,for automated
checking of concurrent software systems that manipulate complex data struc-
tures. We provided a two-fold generalization of traditional symbolic execution

based approaches: one, we defined a program instrumentation, which enables

standard model checkers to perform symbolic execution; two, we gave a novel
symbolic execution algorithm that handles dynamically allocated structures,

method preconditions, data and concurrency. We illustrated two applications

of our framework: checking correctness of multi-threaded programs that take

inputs from unbounded domains with complex structure and generation of non-

isomorphic test inputs that satisfy a testing criteria.

We plan to evaluate the applicability of widening and other techniques that

aid termination in checking rich correctness properties of programs that manip-
ulate complex structures.
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We believe performing symbolic execution during model checking is a pow-

erful technique; how well it scales to real applications remains to be seen.
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